Eigenvalue analysis for the p-Laplacian under convective perturbation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the Smallest Signless Laplacian Eigenvalue of Graphs under Perturbation

In this paper, we investigate how the smallest signless Laplacian eigenvalue of a graph behaves when the graph is perturbed by deleting a vertex, subdividing edges or moving edges.

متن کامل

THE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE EQUATIONS

We consider the eigenvalue problem for the following p-Laplacian-like equation: −div(a(|Du| p)|Du| p−2 Du) = λf (x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ R n is a bounded smooth domain. When λ is small enough, a multiplicity result for eigen-functions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for applications of the theorems.

متن کامل

EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...

متن کامل

A generalized Fucik type eigenvalue problem for p-Laplacian

In this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional p−Laplace type differential equations { −(φ(u′))′ = ψ(u), −T < x < T ; u(−T ) = 0, u(T ) = 0 (∗) where φ(s) = αs + − βs − , ψ(s) = λs + − μs − , p > 1. We obtain a explicit characterization of Fucik spectrum (α, β, λ, μ), i.e., for which the (*) has a nontrivial solution. (1991) AMS Su...

متن کامل

THE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN

Given a bounded domain Ω ⊂ R and numbers p > 1, α ≥ 0, A ∈ [0, |Ω|], consider the following optimization problem: find a subset D ⊂ Ω, of measure A, for which the first eigenvalue of the operator −∆p + αχD φp with the Dirichlet boundary condition is as small as possible. We prove the existence of optimal solutions and study their qualitative properties. We also obtain the radial symmetry of opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1999

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(99)00197-1